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§ Performance impact on individual daemons
§ Loading huge configuration data.
§ Retrieving huge operational data. 

§ Direct IPC between CLI client and FRR daemons
§ Too many internal IPC channels with other forms of UI

§ Running DB maintained inside individual daemons
§ Collection of ‘show running-configuration’ over multiple IPC 

channels.
§ Possible ordering issues with transaction-based configuration 

commits leading to inconsistent state.
§ Burden of YANG data parsing and validations on backend daemons.

Current NorthBound(NB) Infrastructure
Problems with it
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Current Architecture

§ Running DB and YANG trees 
maintained across all back-end 
daemons.

§ Harder to maintain 
consistency of configuration 
state across the system.

§ Bulk of UI processing borne by 
back-end daemons.

§ Keeping away from attending 
to other regular businesses.

§ Performance impact while 
§ Commit large configuration or
§ Retrieving large operational 

dataset(s). 

§ Full-Mesh’ of IPC connections 
between UI Front-end(s) and 
Back-end daemons.



§ Consolidation and management of Running DB by a single entity
§ Better control over configuration validation, commit and rollback.
§ Faster collection of ‘show running-config’.
§ Remove burden of YANG data parsing and validations (model-wise) 

away from Backend daemons.
§ Improve performance and avoid CPU hogging of Backend daemons 

while:
§ Loading huge configuration changeset(s).
§ Retrieving huge operational dataset(s).

§ Avoid too many IPC channels between UI client and FRR daemons
§ Move from ‘Full Mesh’ to ‘Hub-n-Spoke’

Objectives of this Proposal
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FRR Management Daemon(MGMTD)
Final Proposed Architecture

§ New MGMTD daemon 
between UI front-end and 
Backend daemons.

§ Hub-n-Spoke instead of 
‘Full-Mesh’

§ System-wide Running DB 
and all the YANG trees 
maintained by a single entity

§ Single point to manage and 
authenticate all UI 
transactions.

§ Minimal UI processing on the 
backend daemons.

and
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FRR Management Daemon(MGMTD)
Interim Proposed Architecture

§ New and old infrastructure 
co-exist together.

§ Minimal impact.

§ Upgrade backend daemons 
one by one and move to new 
infrastructure.

§ Remove old infrastructure 
after all backend daemons 
has been moved to new 
infrastructure.

§ Revamp existing or 
implement new front-ends 
using the new infrastructure.

and
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Current CLI Processing Flow

and
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Proposed CLI Processing Flow

and
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Datastore Model
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Datastore Model
NETCONF RFC8342



§ Config Datastores/DBs
§ NETCONF RFC6536

§ Running DB 
§ Global – SUPPORT: YES

§ Candidate DB 
§ Global – SUPPORT: YES
§ Per-Session –Not needed

§ Startup DB 
§ Global – SUPPORT: YES

§ Intended DB -- Global
§ Should it be Supported?

§ Others
§ Multiple copies for Rollback???

§ Operational Datastores/DB
§ Both Config(config:true) and Operational(config:false) data.
§ WRITE operations NOT allowed.
§ READ always fetched from back-end.

Datastores Requirements
Types of Datastores
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Front-End Interface



§ CLI Terminal / VTYSH
§ NETCONF (RFC6241) Agent
§ RESTCONF (RFC8040) Agent
§ GRPC (grpc.io) Agent

Front-End Clients



§ Operations
§ Base (RFC6241)

§ <lock>
§ <unlock>
§ <get-config>
§ <edit-config>
§ <delete-config>
§ <copy-config>
§ <commit>
§ <get>

§ Others (RFC6241)
§ <validate> – dry-run for ‘candidate’
§ <commit> without <commit-

confirmed>
§ <cancel-commit> – NOT Supported

§ RFC 8526
§ <get-data>
§ <edit-data>

Front-End Clients
NETCONF Requirements (RFC6241/RFC6536/RFC8526)

§ Datastores/DBs
§ Running DB <Global>
§ Candidate DB <Global>
§ Startup DB <Global>
§ Intended DB <Global> ???

§ Features
§ Writable Running
§ Candidate Configuration
§ Rollback-on-error
§ Validate
§ Distinct Startup DB
§ Operational Default



Front-End Clients
NETCONF Capabilities

Capability Requirement Support

Writable-Running 
Capability 
[RFC6241 section8.2]

• Allow direct write operations like <edit-config> 
and <copy-config> on ‘Running’ datastore as 
target.

YES

Candidate Configuration 
Capability 
[RFC6241 section 8.3]

• Supports a candidate configuration datastore. 
• Requires supporting <commit> and <discard-

changes> operation along with other regular 
operations.

YES

Confirmed Commit 
Capability 
[RFC6241 section 8.4]

• Support <commit> operation with <confirmed-
commit>,  <commit-timeout> and <persist> 
parameters. 

• Support <cancel-commit> operation.

NO

Rollback-on-Error 
Capability
[RFC6241 section 8.5]

• Support the "rollback-on-error" value in the 
<error-option> parameter to the <edit-config> 
operation

YES



Front-End Clients
NETCONF Capabilities (contd.)

Capability Requirement Support

Validate Capability
[RFC6241 section 8.6]

• Support <validate> operation.
• Support <test-option> parameter for <edit-config> 

operation.

YES

Distinct Startup
Capability
[RFC6241 section 8.7]

• Support separate running and startup
configuration datastores

YES

URL Capability 
[RFC6241 section 8.8]

• Ability to accept the <url> element in <source> 
and <target> parameters.

TBD

XPath Capability
[RFC6241 section 8.9]

• Supports the use of XPath expressions in the 
<filter> element.

YES

Yang Library Capability
[RFC8526 section 2]

• Advertise support for YANG library 1.1 YES



Front-End Clients
NETCONF Capabilities (contd.)

Capability Requirement Support

“with-operational-
defaults” Capability
[RFC8526 section 
3.1.1.2]

• Support <with-defaults> parameter with <get-
data> operation.

YES



§ Operations
§ HEAD

§ Get key fields only.
§ GET
§ POST

§ Create -- Config
§ Invoke -- RPC

§ PUT
§ PATCH
§ DELETE
§ QUERY

Front-End Clients
RESTCONF Requirements (RFC8040)

§ Datastores/DBs
§ Running DB <Global>
§ Candidate DB <Global>



Front-End Clients
RESTCONF Requirements (RFC8040)



§ INIT_SESSION_REQ<Client-Connection-Id>

§ INIT_SESSION_REPLY<Client-Connection-Id, Session-Id>

§ LOCK_DB_REQ <Session-Id, Database-Id>

§ LOCK_DB_REPLY <Session-Id, Database-Id>

§ UNLOCK_DB_REQ <Session-Id, Database-Id>

§ UNLOCK_DB_REPLY <Session-Id, Database-Id>

§ GET_CONFIG_REQ <Session-Id, Database-Id, Base-Yang-Xpath>

§ GET_CONFIG_REPLY <Session-Id, Database-Id, Base-Yang-Xpath, Yang-Data-Set>

§ SET_CONFIG_REQ <Session-Id, Database-Id, Base-Yang-Xpath, Delete>

§ SET_CONFIG_REPLY <Session-Id, Database-id, Base-Yang-Xpath, Status>

Front-End Interface
MGMTD Front-End Adapter Message-API



Front-End Interface
MGMTD Front-End Adapter Message-API

§ VALIDATE_CONFIG_REQ <Session-Id, Database-Id>

§ VALIDATE_CONFIG_REPLY <Session-Id, Database-id>

§ COMMIT_CONFIG_REQ <Session-Id, Source-Db-Id, Dest-Db-Id>

§ COMMIT_CONFIG_REPLY <Session-Id, Source-Db-id, Dest-Db-Id, Status>

§ GET_DATA_REQ <Session-Id, Database-Id, Base-Yang-Xpath>

§ GET_DATA_REPLY <Session-Id, Database-id, Base-Yang-Xpath, Yang-Data-Set>

§ REGISTER_NOTIFY_REQ <Session-Id, Database-Id, Base-Yang-Xpath>

§ DATA_NOTIFY_REQ <Database-Id, Base-Yang-Xpath, Yang-Data-Set>

§ CLOSE_SESSION_REQ<Session-Id>
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Front-End Interface
NETCONF Client

• <lock>
• LOCK_DB_REQ/REPLY

• <get-config/get-data> for 
‘running’ or ‘candidate’ DB.
• GET_CONFIG_REQ/REPLY

• <edit-config>/<edit-data>
• SET_CONFIG_REQ/REPLY
• VALIDATE_CONFIG_REQ/

REPLY for ‘running’ DB and 
‘test-only:true’.

• COMMIT_CONFIG_REQ/R
EPLY for ‘running’ DB and 
‘test-only:false’.

• <validate>
• VALIDATE_CONFIG_REQ/

REPLY

and
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Front-End Interface
NETCONF Client (contd.)

• <copy-config>/<commit>
• COMMIT_CONFIG_REQ/R

EPLY. 

• <get-data>/<get> for 
‘operational’ DB.
• GET_DATA_REQ/REPLY

• <unlock>
• UNLOCK_DB_REQ/REPLY

and
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Front-End Interface
RESTCONF Client

• POST/PUT/PATCH/DELETE
• LOCK_DB_REQ/REPLY
• SET_CONFIG_REQ/REPLY
• COMMIT_CONFIG_REQ/R

EPLY
• UNLOCK_DB_REQ/REPLY

• HEAD/GET
• LOCK_DB_REQ/REPLY
• GET_CONFIG_REQ/REPLY
• UNLOCK_DB_REQ/REPLY
• GET_DATA_REQ/REPLY

and
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Back-End Interface



§ Back-End Registration
§ CLIENT_SUBSCRIBE_REQ <Req-Id, Base-Yang-Xpath, Filter-Type>
§ CLIENT_SUBSCRIBE_REPLY <Req-Id, Status>

§ Transaction Management
§ CREATE_TRXN_REQ <Trxn-Id, Create> with ‘Create’=False for Delete request
§ CREATE_TRXN_REPLY <Trxn-Id, Create, Status>

§ Notifications
§ DATA_NOTIFY_REQ <Xpath, DataContents>

Backend-End Interface
MGMTD Back-End Adapter Message-API



§ Configuration
§ CREATE_CFGDATA_REQ <Trxn-Id, Req-Id, Batch-Id, ConfigDataContents>
§ CREATE_CFGDATA_ ERROR <Trxn-Id, Req-Id, Batch-Id, Status>
§ VALIDATE_CFGDATA_REQ <Trxn-Id, Req-Id, Batch-Id>
§ VALIDATE_CFGDATA_REPLY <Trxn-Id, Batch-Id, Status, ErrorInfo>
§ APPLY_CFGDATA_REQ <Trxn-Id, Batch-Id>
§ APPLY_CFGDATA_REPLY <Trxn-Id, Batch-Id, Status, ErrorInfo>

§ Retrieving Opertional Data
§ GET_OPERDATA_REQ <Trxn-Id, Req-Id, Base-Yang-Xpath, Filter-Type>
§ GET_OPERDATA_REPLY <Trxn-Id, Req-Id, OperDataContents>

§ Invoke RPC/Action
§ ACTION_REQ < Trxn-Id, Req-Id, Yang-Xpath>
§ ACTION_REPLY < Trxn-Id, Req-Id, Status, ErrorIfAny>

Backend-End Interface
MGMTD Back-End Adapter Message-API
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Transaction Management
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Transaction Management
Low-level Design details

• Only one configuration ‘commit’ allowed at any point in time.
• But one configuration ‘commit’ and several ‘show’ commands from multiple 

sessions MAY be allowed.

Requirements

• Multiple users may enter config mode and enter config commands.
• But only the transaction for which ‘commit’ is received first will be put ‘In-

Progress’.
• All ‘commits’ from that point will be responded back with failure till the current 

‘In-progress’ commit is finished and the ‘Running DB’ is updated.

Assumptions



User 1
$ config terminal

# vrf red

# Ip route 1.1.1.1/32 ens192

# show config
vrf red
Ip router 1.1.1.1/32 ens192

# commit

<commit successful>

#

Transaction Management
Handling Multiple User Sessions: OPTION1

User 2
$

$ config terminal

# vrf red

# Ip route 1.1.1.1/32 ens224

# show config
vrf red
Ip router 1.1.1.1/32 ens224

# commit

< error – commit already in-progress >

# do show running-config vrf red

vrf red

Ip router 1.1.1.1/32 ens192

# commit

<commit successful>

#

User 3
$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

vrf red

Ip router 1.1.1.1/32 ens192

$

$ show running-config vrf red

vrf red

Ip router 1.1.1.1/32 ens224



User 1
$ config terminal

# vrf red

# Ip route 1.1.1.1/32 ens192

# show config
vrf red
Ip router 1.1.1.1/32 ens192

# commit

<commit successful>

# end

$

Transaction Management
Handling Multiple User Sessions: OPTION2 <Preferred so far>

User 2
$

$ config terminal

< error – config session already in-progress >

$ config terminal

< error – config session already in-progress >

$ config terminal

< error – config session already in-progress >

$ config terminal

< error – config session already in-progress >

…

$ config terminal

# vrf red

# ip route 1.1.1.1/32 ens224

#commit
<commit successful>

#

User 3
$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

vrf red

Ip router 1.1.1.1/32 ens192

$

$ show running-config vrf red

vrf red

Ip router 1.1.1.1/32 ens224



Transaction Management
Types of Transactions

• Write (and possibly read) transactions.
• Initiated with a ‘commit’ command.
• Only one allowed at any point in time.
• Takes a write-lock on the System-wide Running DB 

• Only when merging the candidate DB with running DB -- ???.

CONFIG – Configuration Transactions

• Read-only transactions.
• Initiated with a ‘show’ command.
• Multiple parallel ‘show’ transaction may be allowed.
• Takes a read-lock on the System-wide Running DB.

• Cannot proceed while ‘merging of the candidate DB with running DB’ from a parallel CONFIG 
transaction.

SHOW – Show Oper/Config Transactions
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Processing Configurations



§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ See later slides for discussion.

§ PHASE-2: Validating the XPATH and corresponding value against Yang Schema
§ Again executed on application daemon. 
§ Needs access to Yang Schema tree and Data tree (Running DB).

§ PHASE-3: Validating the corresponding value against current configuration 
§ Again executed through ‘create/modify/destroy’ callbacks on application daemon.
§ Needs access to current configuration in Yang Data tree (Running DB).

§ PHASE-4: Applying the corresponding value on the backend internal state
§ Again executed through ‘create/modify/destroy’ callbacks on application daemon.
§ Needs to access backend internal state.
§ Must not need access to Yang Data tree.

Processing Configuration
Sub-Phases and Requirements



§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ See later slides for discussion.

§ PHASE-2: Validating the XPATH and corresponding value against Yang Schema
§ Anyhow will have to be moved to MGMTD daemon. 
§ Access to Yang Schema tree and Data tree (Running DB) can be provided on MGMTD itself.

§ PHASE-3: Validating the corresponding value against current configuration 
§ Triggered through Backend client library using message exchange between MGMTD and backend.
§ Executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Validation against current configuration 

§ Maintain a duplicate Yang Data sub-tree (Running DB)  on backend daemon.
§ Or, maintain a shadow copy of configuration on internal storage. Most daemons do that.

§ PHASE-4: Applying the corresponding value on the backend internal state
§ Executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Needs to access backend internal state.
§ Must not need access to Yang Data tree.
§ Triggered through Backend client library using message exchange between MGMTD and backend.

Processing Configuration
Proposal 1 (Initial Approach)
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Sharing Management Data

§ Option-1
§ MGMTD daemon maintain

§ Yang Schema Tree
§ Yang Data Tree

§ Running Db
§ Candidate Db

§ Backend daemon maintain
§ Duplicate Yang Schema Tree
§ Duplicate Yang Data subtree copy
§ Internal state.

§ MGMTD loads modules written 
by backend to map text 
commands to corresponding 
XPath.

§ But they MUST NOT have 
dependency on internal state of the 
backend daemon.

§ MGMTD and Backend daemon 
exchange Xpath and data in 
native format (using Protobufs)

§ For Validation (In proposal 1 only)
§ For Applying config.

and

Proposal 1: Option1 (Initial Approach)
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Sharing Management Data

§ Option-2
§ MGMTD daemon maintain

§ Yang Schema Tree
§ Yang Data Tree

§ Running Db
§ Candidate Db

§ Backend daemon maintain
§ Internal state only.

§ MGMTD loads modules 
written by backend to map 
text commands to 
corresponding XPath.

§ But they MUST NOT have 
dependency on internal state of 
the backend daemon.

§ MGMTD and Backend 
daemon exchange Xpath
and data in native format 
(using Protobufs)

§ For Validation (In proposal 1 only)
§ For Applying config.

and

Proposal-1 Option2 and Proposal-2 (Final goal)



§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ See later slides for discussion.

§ PHASE-2: Validating the XPATH and corresponding value against Yang Schema
§ Anyhow will have to be moved to MGMTD daemon. 
§ Access to Yang Schema tree and Data tree (Running DB) can be provided on MGMTD itself.

§ PHASE-3: Validating the corresponding value against current configuration 
§ Executed through ‘create/modify/destroy’ callbacks on (and hence to be loaded on) MGMTD daemon. 
§ Validation against current configuration in Yang Data tree (Running DB)  on MGMTD daemon only.

§ No message exchange required between MGMTD and backend.

§ PHASE-4: Applying the corresponding value on the backend internal state
§ Executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Needs to access backend internal state.
§ Must not access Yang Data tree.
§ Triggered through Backend client library using message exchange between MGMTD and backend.

Processing Configuration
Proposal 2 (Incremental on-need basis)
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Processing Show Commands



§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ Currently implemented and executed on backend daemon.

§ PHASE-2: Validating the XPATHs against Yang Schema
§ Again executed on backend daemon. 
§ Needs access to Yang Schema tree and Data tree (Running DB).

§ PHASE-3: Fetching the corresponding value from the backend internal state
§ Again executed backend daemon.
§ MUST need access to backend internal state.

Processing Show Commands
Sub-Phases and Requirements



§ Step-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ Has to be somehow moved to MGMTD daemon.

§ Step-2: Validating the XPATH and corresponding value against Yang Schema
§ Anyhow will have to be moved to MGMTD daemon. 
§ Access to Yang Schema tree and Data tree (Running DB) can be provided on MGMTD itself.

§ Step-3: Fetching the corresponding value from the backend internal state 
§ Executed through ‘get-data/get-elem’ callbacks on backend daemon.
§ Needs to access backend internal state.
§ Must not access Yang Data tree. 
§ Triggered through Backend client library using message exchange between MGMTD and 

backend.

Processing Show Commands
Proposal
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Sharing Management Data

§ MGMTD daemon maintain
§ Yang Schema Tree
§ Yang Data Tree
§ Running Db
§ Candidate Db

§ Backend daemon maintain
§ Internal state only needed.

§ MGMTD loads modules written 
by backend to map text 
commands to corresponding 
XPath.

§ But they MUST NOT have 
dependency on internal state 
of the backend daemon.

§ MGMTD and Backend daemon 
exchange Xpath and data in 
native format (using Protobufs)

§ For fetching value from 
Internal state.

and

Proposal-2



43

Parsing YANG Data



§ Yang data stored in Application Daemon
§ Parsed from string to native format on receiving from VTYSH

§ Stored as native binary format in Yang Data Tree 
(lyd_term_node::value)

§ Converted back to string while replying back to VTYSH.

Parsing and passing Yang data
Current method



§ Yang data stored in MGMTD Daemon
§ Proposal 1

§ Parsed from string to native data format on Frontend client.
§ Passed as native data format on Frontend interface to MGMTD.
§ Stored as native data format in Yang Data Tree on MGMTD.
§ Passed to and back from application daemon as native data format over Backend 

interface.
§ Passed as native data format on Frontend interface back to Frontend client.
§ Converted back to string on Frontend client.

Parsing and passing Yang data
New MGMTD Architecture



§ Yang data stored in MGMTD Daemon
§ Proposal 2 (community preferred approach)

§ Passed as string on Frontend interface to MGMTD.
§ Parsed from string to native data format on MGMTD.
§ Stored as native data format in Yang Data Tree on MGMTD.
§ Passed to and back from application daemon as native data format over Backend 

interface.
§ Converted back to string on MGMTD to send for replying to Frontend client.
§ Passed as string format on Frontend interface back to Frontend client.

Parsing and passing Yang data
New MGMTD Architecture
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Applying configurations on 
Backend



§ Config is pre-validated on MGMTD.
§ No need to wait for APPLY on Backend for Commit to complete.

§ CFG_APPLY_REQ is queued for processing later.
§ Pros

§ Commit can return much earlier.
§ Configuration apply can be spread over time to let other job on the same thread.
§ Or can be packed into a much lesser batches than what was possible with inline 

processing.
§ Cons

§ If and only if apply fails, the backend becomes out-of-sync with Config on MGMTD.
§ How to recover?

§ Perhaps restart the backend daemon and re-download config on restart. ???

Applying Config on Backend
Offline processing of CFR_APPLY_REQ
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Handling VTYSH commands 



Current Method
Current Config Commands Processing

Staticd

VTYSH Zebra

lib/vty.c static_vty.c

static_nb_
config.c

lib/vty.c zebra_vty.c

zserv.c

X

show ip route

show running config

ip route x.x.x.x/yX



MGMTD

Frontend
Adapter

Backend
Adapter

lib/vty.c

Transactions

Running
DB

Candidate
DB

FE

static_vty.c
bgp_vty.c

Option 1
Diverted to and Processed on MGMTD (intermediate approach)

Staticd

VTYSH

BGP

lib/vty.c static_vty.c

static_nb_
config.c

Backend
Client Lib

lib/vty.c bgp_vty.c

X

router bgp 100

MGMTD config and 
show commands

ip route x.x.x.x/y

ip route x.x.x.x/y

X

SET_CONFIG
<xpath, 
value

CREATE_DATA
<xpath, value>
VALIDATE_REQ

APPLY_REQ

mgmt commit-apply

COMMIT-
CONFIG

bgp_nb_
config.c

X

Backend
Client Lib

CREATE_DATA
<xpath, value>
VALIDATE_REQ

APPLY_REQ
router bgp 100

X



§ Command handlers lib-ified and loaded on MGMTD
§ Cannot access any internal state of the Back-end application daemon.
§ Passes set of Xpaths, values and operations to MGMTD Front-end connection.

§ Pros
§ Single connection from VTYSH to MGMTD (and not multiple backend daemons).
§ Conversion from string commands to Xpaths/Value/Operation is no more a 

computational burden on the back-end application daemon.

§ Cons
§ Auto-completion cannot be done as is today.

§ Needs to fetch data from MGMTD (running-config or operational).
§ And then present auto-completion options.

Option 1
Diverted to and Processed on MGMTD (interim approach)



MGMTD

Frontend
Adapter

Backend
Adapter

lib/vty.c

MGMTD_v
ty.c Transactions

Running
DB

Candidate
DB

Option 2
Retained and processed on Backend daemon

VTYSHMGMTD config and 
show commands

SET_CONFIG
<xpath, 
value

CREATE_DATA
<xpath, value>
VALIDATE_REQ

APPLY_REQ

mgmt commit-apply

COMMIT-
CONFIG

Staticd

BGP

lib/vty.c static_vty.c

static_nb_
config.c

Backend
Client Lib

lib/vty.c bgp_vty.c

X

router bgp 100

ip route x.x.x.x/y

bgp_nb_
config.c

X

Backend
Client Lib

CREATE_DATA
<xpath, value>
VALIDATE_REQ

APPLY_REQ

FE

FE

COMMIT-
CONFIG



§ Command handlers running on Back-end daemons as is today
§ Can access any internal state of the Back-end application daemon.
§ Passes set of Xpaths, values and operations to MGMTD Front-end connection.

§ Pros
§ Auto-completion can be done as is today.

§ Cons
§ Conversion from string commands to Xpaths/Value/Operation is still a burden on 

the back-end application daemon.
§ VTYSH continues to maintain connections to all individual back-end application 

daemons.
§ MGMTD currently does not allow more than one front-end client to edit candidate 

DB simultaneously. NOT FEASIBLE.

Option 2
Retained and processed on Backend daemon (not feasible)



MGMTD

Frontend
Adapter

Backend
Adapter

lib/vty.c

MGMTD_v
ty.c Transactions

Running
DB

Candidate
DB

Option 3
Moved to VTYSH (final)

VTYSH

MGMTD config and 
show commands

SET_CONFIG
<xpath, 
value>

CREATE_DATA
<xpath, value>
VALIDATE_REQ

APPLY_REQ

Staticd

BGP

static_nb_
config.c

Backend
Client Lib

router bgp 100 ip route x.x.x.x/y

bgp_nb_
config.c

Backend
Client Lib

CREATE_DATA
<xpath, value>
VALIDATE_REQ

APPLY_REQ

COMMIT-
CONFIG

lib/vty.c

bgp_vty.c

FE

static_vty.c



§ Command handlers lib-ified and loaded on VTYSH
§ Cannot access any internal state of the Back-end application daemon.
§ Passes set of Xpaths, values and operations to MGMTD Front-end connection.

§ Pros
§ Single connection from VTYSH to MGMTD (and not multiple backend daemons).
§ Conversion from string commands to Xpaths/Value/Operation is no more a 

computational burden on the back-end application daemon.
§ MGMTD does not need to deal with Text-to-YANG conversion at all.

§ Cons
§ Auto-completion cannot be done as is today.

§ Needs to fetch data from MGMTD (running-config or operational).
§ And then present auto-completion options.

Option 3
Moved to VTYSH
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Parsing YANG Xpath



§ Currently
§ Yang data and schema trees stored in Application Daemon.
§ Xpath in string format parsed using Yang Schema and Data trees.

§ The same is used to retrieve Xpath key-values within NB callback functions (e.g. vrf-
name, interface-name, address-families etc).

§ Sometime involves looking up nodes in the Yang data tree.

§ New MGMTD Infrastructure
§ Yang data and schema trees stored in MGMTD.
§ Xpath parsing is possible on MGMTD.
§ How to provide Xpath key-values to NB callbacks on application daemon

§ Without needing to look up nodes in the Yang data tree.

Parsing and passing Yang Xpath
Problem Statement



§ Solution 1 (Interim approach)
§ Always maintain a Yang schema and data tree on application daemons too.
§ Have NB callbacks keep looking up data nodes as today.

§ Solution 2 (Final goal)
§ Parse Xpath into tokens (of tags and key-values).

§ May not have equivalent support from libyang.

§ Pass it to NB callbacks for use (instead of looking up data nodes in Yang data tree).

Parsing and passing Yang Xpath
Possible Solution
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Parsing YANG XPath
XPATH: 
/frr-routing:routing/control-plane-protocols/control-plane-
protocol{frr-rt:type='frr-bgp:bgp', name='bgp-100', frr-
vrf:vrf='default'}/frr-bgp:bgp/global/frr-rt:router-id

§ <Notes TBA>

and

length = 7 num_keys keys[0] keys[1] keys[2] … keys[255]

tags[0] 1 frr-routing | routing

tags[1] 1 frr-routing | control-
plane-protocols

tags[2] 1 frr-routing | control-
plane-protocol

tags[3] 3 frr-routing | type = 
“bgp”

frr-routing | name = 
”bgp-100" 

frr-routing | Vrf = 
”default”

tags[4] 1 frr-bgp | bgp

tags[5] 1 Frr-bgp | global

tags[6] 1 frr-bgp | router-id  = 
”1.1.1.1" 

…

Tags[255]
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Parsing YANG XPath

§ <Notes TBA>

and
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Parsing YANG XPath

and

num_keys keys[0] keys[1] keys[2] … keys[255]

tags[0] 1 .tag = { 
.ns = frr-routing,           
.id = routing 

} 
.val = { 

.xml_tag =    
"routing" 

}

…

tags[3] 3 .tag = { 
.ns = frr-rt,           
.id = type 

} 
.val = { 

.identityref =    
”bgp" 

}

.tag = { 
.ns = frr-rt,           
.id = name

} 
.val = { 

.string =    
”bgp-100" 

}

.tag = { 
.ns = frr-vrf,           
.id = vrf

} 
.val = { 

.string  = ”default”
}

…

tags[6] 1 tag = { 
.ns = frr-rt,           
.id = router-id 

} 
.val = { 

.ipv4_addr =    
”1.1.1.1" 

}
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Static Mapping
XPATH: 
/frr-routing:routing/control-plane-protocols/control-plane-
protocol{frr-rt:type='frr-bgp:bgp', name='bgp-100', frr-
vrf:vrf='default'}/frr-bgp:bgp/global/frr-rt:router-id

§ <Notes TBA>

and

Xpath Regexp Backend Adapter Name

“/frr-routing:routing/control-plane-protocols/control-plane-
protocol{frr-rt:type=“frr-bgp”', name=‘*’, frr-vrf:vrf=‘*’}/*”

“BGPd”

“/frr-system:system/hostname” “ISISd”, “OSPd”, “Systemd”

“/frr-system:system/*” “Systemd”

tags[3] 3

tags[4] 1

tags[5] 1

tags[6] 1

…

Tags[255]
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End-to-End Processing
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High-level End-to-End Processing Flow
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Back-end Initialization and Registration
(Re)Connecting to MGMTD

§ Back-end daemon re/init
§ Initializes NB back-end library

§ Provides unique details identifying 
itself uniquely.

§ Triggers connection initiation towards 
MGMTD.

§ Registers required callbacks for 
the YANG models it is interested 
in.

§ Registers a series of callback handlers 
for individual/group of configuration 
and operational data items. 

§ NB back-end lib passes the same to 
MGMTD.

§ MGMTD
§ Creates new Back-end adapter.

§ Associates it with relevant parts of the 
YANG data tree.

§ Passes any relevant 
configuration already present.

and
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Processing Configuration using Transactions
Step-1: Locking Candidate Database and Editing Configuration on Candidate DB

§ MGMTD receives 
LOCK_DEB_REQ for candidate 
DB.

§ If no other session has taken a 
write-lock on Candidate-Db

§ Take write-lock on Candidate-Db.
§ Sends LOCK_DB_REPLY indicating 

success.
§ Else

§ Sends LOCK_DB_REPLY indicating 
Failure.

§ Client on receiving 
LOCK_DB_REPLY with success

§ Sends one (or more) 
SET_CONFIG_REQ

§ MGMTD on receiving 
SET_CONFIG_REQ

§ If this is first for this session, 
Creates a CONFIG transaction if 
and only if there are no CONFIG 
transactions in progress.

§ Modifies the contents of the 
Candidate DB with data from 
SET_CONFIG_REQ.

and
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Processing Configuration using Transactions
Step-2: Commit Configuration from Candidate to Running DB

§ MGMTD receives commit request.
§ Creates transaction for entire 

processing
§ Examines the changeset and 

prepares.
§ Candidate DB andl ist of YANG tree 

nodes being changed.
§ List of back-end adapters 

associated.
§ Ordered batches of config nodes 

with associated back-end adapter(s)
§ Sends indication to each back-end 

daemon for creating local transaction 
context.

§ Sends each batch of config items to 
corresponding back-end daemons for 
verification/validation. 

§ On successful validation from all
§ Pushes the same batches of config 

items to the relevant back-end 
daemon(s) for final apply.

§ Replies back to Front-end adapter 
with success

§ Merges candidate DB to running 
DB.

§ Cleans up and deletes the 
transaction itself.

and
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Processing Configuration using Transactions
Step-3: Cleaning up commit and Unlocking the Candidate DB

§ Merges candidate DB to 
running DB.

§ Replies back to Front-end 
client with 
COMMIT_CONFIG_REPLY 
indicating success.

§ Cleans up and deletes the 
transaction itself.

and
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Processing Configuration using Transactions
Handling Valid Configurations across multiple Backend Daemons

§ MGMTD receives commit request.
§ Creates transaction for entire 

processing
§ Examines the changeset and 

prepares.
§ Candidate DB andl ist of YANG tree 

nodes being changed.
§ List of back-end adapters 

associated.
§ Ordered batches of config nodes 

with associated back-end adapter(s)
§ Sends indication to each back-end 

daemon for creating local transaction 
context.

§ Sends each batch of config items to 
corresponding back-end daemons for 
verification/validation. 

§ On successful validation from all
§ Pushes the same batches of config 

items to the relevant back-end 
daemon(s) for final apply.

§ Replies back to Front-end adapter 
with success

§ Merges candidate DB to running 
DB.

§ Cleans up and deletes the 
transaction itself.

and
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Processing Configuration using Transactions
Handling Invalid Configurations across multiple Backend Daemons

§ MGMTD receives commit 
request.

§ Creates transaction thread 
for entire processing

§ Examines the changeset and 
prepares.

§ Candidate DB andl ist of YANG 
tree nodes being changed.

§ List of back-end adapters 
associated.

§ Ordered batches of config nodes 
with associated back-end 
adapter(s)

§ Sends indication to each back-end 
daemon for creating local 
transaction context.

§ Sends each batch of config items to 
corresponding back-end daemons 
for verification/validation. 

§ On first validation failure from any
§ Replies back to Front-end 

adapter with error.
§ Deletes candidate DB.
§ Cleans up and deletes the 

transaction thread itself.

and
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Retrieve Operational Data
Retrieve Lists, Containers and Leaf members

and
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Retrieve Operational Data
Retrieve Lists, Containers and Leaf members

and
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Retrieving ‘show running-config’

§ Running DB maintained on 
MGMTD.

§ Configurations already 
verified and applied earlier 
on back-end daemons.

§ No need to involve back-
end process for ‘show 
running config’.

and
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Notifying data from Backend

§ Front-end client sessions 
express interest in specific 
Yang data-items.

§ Frontend client library sends 
NOTIFY_DATA_REQ with 
corresponding details

§ Front-end adapter on 
MGMTD registers the 
corresponding session 
against the Yang data node 
for future reference.

§ Later data notification arrives 
on backend adapter

§ Looks up all registered 
sessions.

§ Sends a 
DATA_NOTIFY_REQ for 
each of the registered 
sessions.

and



Open Items and Issues

• Support for namespace 
• Registration of callbacks at back-end. Possibly from multiple back-end daemons for the 

same configuration item with priority-based ordering.
• Delivery of callbacks registered from multiple backends for the same configuration item
• Avoid YANG parsing on back-end process.
• Provide all the keys of YANG XPath to back-end callback handlers.

Items

• Re-use of existing NB callback handlers.
• Avoid duplicating YANG data tree across MGMTD and back-end daemons.

Issues



Next Items

• Support for namespace 
• Registration of callbacks at back-end. Possibly from multiple back-end daemons for the 

same configuration item with priority-based ordering.
• Delivery of callbacks registered from multiple backends for the same configuration item
• Avoid YANG parsing on back-end process.
• Provide all the keys of YANG XPath to back-end callback handlers.

Low-level Designs

• Re-use of existing NB callback handlers.
• Avoid duplicating YANG data tree across MGMTD and back-end daemons.

Issues
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https://datatracker.ietf.org/doc/html/rfc8342
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THANK YOU!!!
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Backup Slides
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Code Organization

MGMTD/MGMTD_db.
[ch]

MGMTD/MGMTD_trx
n.[ch]

MGMTD/MGMTD_fr
ntnd_server.[ch]

MGMTD/MGMTD_fr
ntnd_adapter.[ch]

MGMTD/MGMTD_
bcknd_server.[ch]

MGMTD/MGMTD_
bcknd_adapter.[ch]

lib/MGMTD_frnte
nd_client.[ch]

lib/MGMTD_bckn
d_client.[ch]

staticd/static_vt
y.[ch]

staticd/static_nb
.[ch]

staticd/static_nb
_config.c

Sample:
MGMTD/MGMTD

_test_frntnd.c

lib/MGMTD.proto



82

Front-End Interface
GRPC Client

• <TBA>

and
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Front-End Interface

• INIT_SESSION_REQ
• INIT_SESSION_REPLY
• LOCK_DB_REQ 
• LOCK_DB_REPLY
• UNLOCK_DB_REQ
• UNLOCK_DB_REPLY
• GET_CONFIG_REQ
• GET_CONFIG_REPLY
• SET_CONFIG_REQ
• SET_CONFIG_REPLY
• COMMIT_CFG_REQ
• COMMIT_CFG_REPLY
• GET_DATA_REQ
• GET_DATA_REPLY
• CLOSE_SESSION_REQ

and
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Retrieve Operational Data
Retrieving Large List elements

§ MGMTD receives GET_DATA 
request.

§ Examines the XPath and 
prepares.
§ List of YANG tree.
§ List of back-end adapters 

associated. 
§ For large ‘list’ node 

§ MGMTD sends a single Get-Data 
requests to back-end daemon.

§ Back-end prepares and send upto
‘N’ items in reply.

§ Indicates the key value for the 
next item. 

§ MGMTD sends data received from 
back-end to Front-end via adapter.

§ Indicates more reply GET-REPLY 
to be expected.

§ MGMTD sends nexr follow upGET-
Next-Data request withnext key 
value received in last reply.

§ Back-end prepares and send next 
‘N’ items starting at next key value.

§ Indicates the key value for the 
next item (‘None’ if there’s no 
more). 

and
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Retrieve Operational Data
Retrieving Large List elements (contd.)

§ For large ‘list’ node 
(contd.)

§ …
§ MGMTD sends multiple follow up 

GET-Next-Data requests to 
back-end with appropriate next-
key value.

§ Back-end prepares and send 
next ‘N’ items in reply.

§ Indicates the key value for the 
next item (‘None’ if there’s no 
more). 

and
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Retrieve Operational Data
Retrieve Containers and Leaf members

§ For ‘container’ node 
§ MGMTD sends a single Get-Data 

requests to back-end daemon.
§ May even combine more than 

one node in a single request.
§ Back-end prepares and sends all 

‘leaf’ items under a single container 
in a single reply. 

§ MGMTD sends data received from 
back-end to Front-end via adapter. 

§ For ‘leaf’ node 
§ MGMTD sends a single Get-Data 

requests to back-end daemon. 
§ Back-end prepares and sends the 

single ‘leaf’ in a single reply. 
§ MGMTD sends data received from 

back-end to Front-end via adapter.

§ If all data nodes has been 
sent, MGMTD sends the last 
GET-REPLY to Front-end.

§ with indication that no more GET-
Replies are to be expected.

and
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Transactions
CONFIG Transactions -- Creating New Transaction

§ <Notes TBA>

and
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Transactions
CONFIG Transactions -- Validating Valid Configurations

§ <Notes TBA>

and
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Transactions
CONFIG Transactions -- Validating Valid Configurations (contd)

§ <Notes TBA>

and
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Transactions
CONFIG Transactions -- Validating Invalid Configurations

§ <Notes TBA>

and
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Transactions
CONFIG Transactions -- Applying Validated Configurations (contd.)

§ <Notes TBA>

and
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Transactions
CONFIG Transactions -- Wrapping Up Successful Commit

§ <Notes TBA>

and
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Transactions
CONFIG Transactions -- Wrapping Up Rejected
Commit

§ <Notes TBA>

and
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Processing VTYSH Commands



§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ Currently implemented as DEFPY_YANG() routines and executed on backend daemon.
§ Calls nb_cli_enqueue_changes() followed by nb_cli_apply_changes()

§ PHASE-2: Validating the XPATH and corresponding value against Yang Schema
§ Again executed on backend daemon. 
§ Needs access to Yang Schema tree and Data tree (Running DB).

§ PHASE-3: Validating the corresponding value against current configuration 
§ Again executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Needs access to current configuration in Yang Data tree (Running DB).

§ PHASE-4: Applying the corresponding value on the backend internal state
§ Again executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Needs to access backend internal state.
§ Must not need access to Yang Data tree.

Processing VTYSH Commands
Sub-Phases and Requirements



§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ Has to be somehow moved to MGMTD daemon for Phase-2.

§ PHASE-2: Validating the XPATH and corresponding value against Yang Schema
§ Anyhow will have to be moved to MGMTD daemon. 
§ Access to Yang Schema tree and Data tree (Running DB) can be provided on MGMTD itself.

§ PHASE-3: Validating the corresponding value against current configuration 
§ Triggered through Backend client library using message exchange between MGMTD and backend.
§ Executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Validation against current configuration 

§ Maintain a duplicate Yang Data sub-tree (Running DB)  on backend daemon.
§ Or, maintain a shadow copy of configuration on internal storage. Most daemons do that.

§ PHASE-4: Applying the corresponding value on the backend internal state
§ Executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Needs to access backend internal state.
§ Must not need access to Yang Data tree.
§ Triggered through Backend client library using message exchange between MGMTD and backend.

Processing Configuration
Proposal 1



§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ Has to be somehow moved to MGMTD daemon for Phase-2.

§ PHASE-2: Validating the XPATH and corresponding value against Yang Schema
§ Anyhow will have to be moved to MGMTD daemon. 
§ Access to Yang Schema tree and Data tree (Running DB) can be provided on MGMTD itself.

§ PHASE-3: Validating the corresponding value against current configuration 
§ Executed through ‘create/modify/destroy’ callbacks on (and hence to be loaded on) MGMTD daemon. 
§ Validation against current configuration in Yang Data trree (Running DB)  on MGMTD daemon only.

§ No message exchange required between MGMTD and backend.

§ PHASE-4: Applying the corresponding value on the backend internal state
§ Executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Needs to access backend internal state.
§ Must not access Yang Data tree.
§ Triggered through Backend client library using message exchange between MGMTD and backend.

Processing Configuration
Proposal 2



Next Items

• Support for namespace 
• Registration of callbacks at back-end. Possibly from multiple back-end daemons for the 

same configuration item with priority-based ordering.
• Delivery of callbacks registered from multiple backends for the same configuration item
• Avoid YANG parsing on back-end process.
• Provide all the keys of YANG XPath to back-end callback handlers.

Low-level Designs

• Re-use of existing NB callback handlers.
• Avoid duplicating YANG data tree across MGMTD and back-end daemons.

Issues



§ Northbound Architecture 
Wiki: https://github.com/opensourcerouting/frr/wiki/Architecture

§ Requirements for Centralised 
Management: https://github.com/FRRouting/frr/wiki/FRR-
Centralized-Management-Requirements

References

https://github.com/opensourcerouting/frr/wiki/Architecture
https://github.com/FRRouting/frr/wiki/FRR-Centralized-Management-Requirements

