
NorthBound Infrastructure
Proposal on Centralised Management
Daemon (MGMTD)

Pushpasis Sarkar <spushpasis@vmware.com>

§ Performance impact on individual daemons
§ Loading huge configuration data.
§ Retrieving huge operational data.

§ Direct IPC between CLI client and FRR daemons
§ Too many internal IPC channels with other forms of UI

§ Running DB maintained inside individual daemons
§ Collection of ‘show running-configuration’ over multiple IPC

channels.
§ Possible ordering issues with transaction-based configuration

commits leading to inconsistent state.
§ Burden of YANG data parsing and validations on backend daemons.

Current NorthBound(NB) Infrastructure
Problems with it

3

Current Architecture

§ Running DB and YANG trees
maintained across all back-end
daemons.

§ Harder to maintain
consistency of configuration
state across the system.

§ Bulk of UI processing borne by
back-end daemons.

§ Keeping away from attending
to other regular businesses.

§ Performance impact while
§ Commit large configuration or
§ Retrieving large operational

dataset(s).

§ Full-Mesh’ of IPC connections
between UI Front-end(s) and
Back-end daemons.

§ Consolidation and management of Running DB by a single entity
§ Better control over configuration validation, commit and rollback.
§ Faster collection of ‘show running-config’.
§ Remove burden of YANG data parsing and validations (model-wise)

away from Backend daemons.
§ Improve performance and avoid CPU hogging of Backend daemons

while:
§ Loading huge configuration changeset(s).
§ Retrieving huge operational dataset(s).

§ Avoid too many IPC channels between UI client and FRR daemons
§ Move from ‘Full Mesh’ to ‘Hub-n-Spoke’

Objectives of this Proposal

5

FRR Management Daemon(MGMTD)
Final Proposed Architecture

§ New MGMTD daemon
between UI front-end and
Backend daemons.

§ Hub-n-Spoke instead of
‘Full-Mesh’

§ System-wide Running DB
and all the YANG trees
maintained by a single entity

§ Single point to manage and
authenticate all UI
transactions.

§ Minimal UI processing on the
backend daemons.

and

6

FRR Management Daemon(MGMTD)
Interim Proposed Architecture

§ New and old infrastructure
co-exist together.

§ Minimal impact.

§ Upgrade backend daemons
one by one and move to new
infrastructure.

§ Remove old infrastructure
after all backend daemons
has been moved to new
infrastructure.

§ Revamp existing or
implement new front-ends
using the new infrastructure.

and

7

Current CLI Processing Flow

and

8

Proposed CLI Processing Flow

and

9

Datastore Model

10

Datastore Model
NETCONF RFC8342

§ Config Datastores/DBs
§ NETCONF RFC6536

§ Running DB
§ Global – SUPPORT: YES

§ Candidate DB
§ Global – SUPPORT: YES
§ Per-Session –Not needed

§ Startup DB
§ Global – SUPPORT: YES

§ Intended DB -- Global
§ Should it be Supported?

§ Others
§ Multiple copies for Rollback???

§ Operational Datastores/DB
§ Both Config(config:true) and Operational(config:false) data.
§ WRITE operations NOT allowed.
§ READ always fetched from back-end.

Datastores Requirements
Types of Datastores

12

Front-End Interface

§ CLI Terminal / VTYSH
§ NETCONF (RFC6241) Agent
§ RESTCONF (RFC8040) Agent
§ GRPC (grpc.io) Agent

Front-End Clients

§ Operations
§ Base (RFC6241)

§ <lock>
§ <unlock>
§ <get-config>
§ <edit-config>
§ <delete-config>
§ <copy-config>
§ <commit>
§ <get>

§ Others (RFC6241)
§ <validate> – dry-run for ‘candidate’
§ <commit> without <commit-

confirmed>
§ <cancel-commit> – NOT Supported

§ RFC 8526
§ <get-data>
§ <edit-data>

Front-End Clients
NETCONF Requirements (RFC6241/RFC6536/RFC8526)

§ Datastores/DBs
§ Running DB <Global>
§ Candidate DB <Global>
§ Startup DB <Global>
§ Intended DB <Global> ???

§ Features
§ Writable Running
§ Candidate Configuration
§ Rollback-on-error
§ Validate
§ Distinct Startup DB
§ Operational Default

Front-End Clients
NETCONF Capabilities

Capability Requirement Support

Writable-Running
Capability
[RFC6241 section8.2]

• Allow direct write operations like <edit-config>
and <copy-config> on ‘Running’ datastore as
target.

YES

Candidate Configuration
Capability
[RFC6241 section 8.3]

• Supports a candidate configuration datastore.
• Requires supporting <commit> and <discard-

changes> operation along with other regular
operations.

YES

Confirmed Commit
Capability
[RFC6241 section 8.4]

• Support <commit> operation with <confirmed-
commit>, <commit-timeout> and <persist>
parameters.

• Support <cancel-commit> operation.

NO

Rollback-on-Error
Capability
[RFC6241 section 8.5]

• Support the "rollback-on-error" value in the
<error-option> parameter to the <edit-config>
operation

YES

Front-End Clients
NETCONF Capabilities (contd.)

Capability Requirement Support

Validate Capability
[RFC6241 section 8.6]

• Support <validate> operation.
• Support <test-option> parameter for <edit-config>

operation.

YES

Distinct Startup
Capability
[RFC6241 section 8.7]

• Support separate running and startup
configuration datastores

YES

URL Capability
[RFC6241 section 8.8]

• Ability to accept the <url> element in <source>
and <target> parameters.

TBD

XPath Capability
[RFC6241 section 8.9]

• Supports the use of XPath expressions in the
<filter> element.

YES

Yang Library Capability
[RFC8526 section 2]

• Advertise support for YANG library 1.1 YES

Front-End Clients
NETCONF Capabilities (contd.)

Capability Requirement Support

“with-operational-
defaults” Capability
[RFC8526 section
3.1.1.2]

• Support <with-defaults> parameter with <get-
data> operation.

YES

§ Operations
§ HEAD

§ Get key fields only.
§ GET
§ POST

§ Create -- Config
§ Invoke -- RPC

§ PUT
§ PATCH
§ DELETE
§ QUERY

Front-End Clients
RESTCONF Requirements (RFC8040)

§ Datastores/DBs
§ Running DB <Global>
§ Candidate DB <Global>

Front-End Clients
RESTCONF Requirements (RFC8040)

§ INIT_SESSION_REQ<Client-Connection-Id>

§ INIT_SESSION_REPLY<Client-Connection-Id, Session-Id>

§ LOCK_DB_REQ <Session-Id, Database-Id>

§ LOCK_DB_REPLY <Session-Id, Database-Id>

§ UNLOCK_DB_REQ <Session-Id, Database-Id>

§ UNLOCK_DB_REPLY <Session-Id, Database-Id>

§ GET_CONFIG_REQ <Session-Id, Database-Id, Base-Yang-Xpath>

§ GET_CONFIG_REPLY <Session-Id, Database-Id, Base-Yang-Xpath, Yang-Data-Set>

§ SET_CONFIG_REQ <Session-Id, Database-Id, Base-Yang-Xpath, Delete>

§ SET_CONFIG_REPLY <Session-Id, Database-id, Base-Yang-Xpath, Status>

Front-End Interface
MGMTD Front-End Adapter Message-API

Front-End Interface
MGMTD Front-End Adapter Message-API

§ VALIDATE_CONFIG_REQ <Session-Id, Database-Id>

§ VALIDATE_CONFIG_REPLY <Session-Id, Database-id>

§ COMMIT_CONFIG_REQ <Session-Id, Source-Db-Id, Dest-Db-Id>

§ COMMIT_CONFIG_REPLY <Session-Id, Source-Db-id, Dest-Db-Id, Status>

§ GET_DATA_REQ <Session-Id, Database-Id, Base-Yang-Xpath>

§ GET_DATA_REPLY <Session-Id, Database-id, Base-Yang-Xpath, Yang-Data-Set>

§ REGISTER_NOTIFY_REQ <Session-Id, Database-Id, Base-Yang-Xpath>

§ DATA_NOTIFY_REQ <Database-Id, Base-Yang-Xpath, Yang-Data-Set>

§ CLOSE_SESSION_REQ<Session-Id>

22

Front-End Interface
NETCONF Client

• <lock>
• LOCK_DB_REQ/REPLY

• <get-config/get-data> for
‘running’ or ‘candidate’ DB.
• GET_CONFIG_REQ/REPLY

• <edit-config>/<edit-data>
• SET_CONFIG_REQ/REPLY
• VALIDATE_CONFIG_REQ/

REPLY for ‘running’ DB and
‘test-only:true’.

• COMMIT_CONFIG_REQ/R
EPLY for ‘running’ DB and
‘test-only:false’.

• <validate>
• VALIDATE_CONFIG_REQ/

REPLY

and

23

Front-End Interface
NETCONF Client (contd.)

• <copy-config>/<commit>
• COMMIT_CONFIG_REQ/R

EPLY.

• <get-data>/<get> for
‘operational’ DB.
• GET_DATA_REQ/REPLY

• <unlock>
• UNLOCK_DB_REQ/REPLY

and

24

Front-End Interface
RESTCONF Client

• POST/PUT/PATCH/DELETE
• LOCK_DB_REQ/REPLY
• SET_CONFIG_REQ/REPLY
• COMMIT_CONFIG_REQ/R

EPLY
• UNLOCK_DB_REQ/REPLY

• HEAD/GET
• LOCK_DB_REQ/REPLY
• GET_CONFIG_REQ/REPLY
• UNLOCK_DB_REQ/REPLY
• GET_DATA_REQ/REPLY

and

25

Back-End Interface

§ Back-End Registration
§ CLIENT_SUBSCRIBE_REQ <Req-Id, Base-Yang-Xpath, Filter-Type>
§ CLIENT_SUBSCRIBE_REPLY <Req-Id, Status>

§ Transaction Management
§ CREATE_TRXN_REQ <Trxn-Id, Create> with ‘Create’=False for Delete request
§ CREATE_TRXN_REPLY <Trxn-Id, Create, Status>

§ Notifications
§ DATA_NOTIFY_REQ <Xpath, DataContents>

Backend-End Interface
MGMTD Back-End Adapter Message-API

§ Configuration
§ CREATE_CFGDATA_REQ <Trxn-Id, Req-Id, Batch-Id, ConfigDataContents>
§ CREATE_CFGDATA_ ERROR <Trxn-Id, Req-Id, Batch-Id, Status>
§ VALIDATE_CFGDATA_REQ <Trxn-Id, Req-Id, Batch-Id>
§ VALIDATE_CFGDATA_REPLY <Trxn-Id, Batch-Id, Status, ErrorInfo>
§ APPLY_CFGDATA_REQ <Trxn-Id, Batch-Id>
§ APPLY_CFGDATA_REPLY <Trxn-Id, Batch-Id, Status, ErrorInfo>

§ Retrieving Opertional Data
§ GET_OPERDATA_REQ <Trxn-Id, Req-Id, Base-Yang-Xpath, Filter-Type>
§ GET_OPERDATA_REPLY <Trxn-Id, Req-Id, OperDataContents>

§ Invoke RPC/Action
§ ACTION_REQ < Trxn-Id, Req-Id, Yang-Xpath>
§ ACTION_REPLY < Trxn-Id, Req-Id, Status, ErrorIfAny>

Backend-End Interface
MGMTD Back-End Adapter Message-API

28

Transaction Management

29

Transaction Management
Low-level Design details

• Only one configuration ‘commit’ allowed at any point in time.
• But one configuration ‘commit’ and several ‘show’ commands from multiple

sessions MAY be allowed.

Requirements

• Multiple users may enter config mode and enter config commands.
• But only the transaction for which ‘commit’ is received first will be put ‘In-

Progress’.
• All ‘commits’ from that point will be responded back with failure till the current

‘In-progress’ commit is finished and the ‘Running DB’ is updated.

Assumptions

User 1
$ config terminal

vrf red

Ip route 1.1.1.1/32 ens192

show config
vrf red
Ip router 1.1.1.1/32 ens192

commit

<commit successful>

#

Transaction Management
Handling Multiple User Sessions: OPTION1

User 2
$

$ config terminal

vrf red

Ip route 1.1.1.1/32 ens224

show config
vrf red
Ip router 1.1.1.1/32 ens224

commit

< error – commit already in-progress >

do show running-config vrf red

vrf red

Ip router 1.1.1.1/32 ens192

commit

<commit successful>

#

User 3
$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

vrf red

Ip router 1.1.1.1/32 ens192

$

$ show running-config vrf red

vrf red

Ip router 1.1.1.1/32 ens224

User 1
$ config terminal

vrf red

Ip route 1.1.1.1/32 ens192

show config
vrf red
Ip router 1.1.1.1/32 ens192

commit

<commit successful>

end

$

Transaction Management
Handling Multiple User Sessions: OPTION2 <Preferred so far>

User 2
$

$ config terminal

< error – config session already in-progress >

$ config terminal

< error – config session already in-progress >

$ config terminal

< error – config session already in-progress >

$ config terminal

< error – config session already in-progress >

…

$ config terminal

vrf red

ip route 1.1.1.1/32 ens224

#commit
<commit successful>

#

User 3
$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

<blank>

$ show running-config vrf red

vrf red

Ip router 1.1.1.1/32 ens192

$

$ show running-config vrf red

vrf red

Ip router 1.1.1.1/32 ens224

Transaction Management
Types of Transactions

• Write (and possibly read) transactions.
• Initiated with a ‘commit’ command.
• Only one allowed at any point in time.
• Takes a write-lock on the System-wide Running DB

• Only when merging the candidate DB with running DB -- ???.

CONFIG – Configuration Transactions

• Read-only transactions.
• Initiated with a ‘show’ command.
• Multiple parallel ‘show’ transaction may be allowed.
• Takes a read-lock on the System-wide Running DB.

• Cannot proceed while ‘merging of the candidate DB with running DB’ from a parallel CONFIG
transaction.

SHOW – Show Oper/Config Transactions

33

Processing Configurations

§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ See later slides for discussion.

§ PHASE-2: Validating the XPATH and corresponding value against Yang Schema
§ Again executed on application daemon.
§ Needs access to Yang Schema tree and Data tree (Running DB).

§ PHASE-3: Validating the corresponding value against current configuration
§ Again executed through ‘create/modify/destroy’ callbacks on application daemon.
§ Needs access to current configuration in Yang Data tree (Running DB).

§ PHASE-4: Applying the corresponding value on the backend internal state
§ Again executed through ‘create/modify/destroy’ callbacks on application daemon.
§ Needs to access backend internal state.
§ Must not need access to Yang Data tree.

Processing Configuration
Sub-Phases and Requirements

§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ See later slides for discussion.

§ PHASE-2: Validating the XPATH and corresponding value against Yang Schema
§ Anyhow will have to be moved to MGMTD daemon.
§ Access to Yang Schema tree and Data tree (Running DB) can be provided on MGMTD itself.

§ PHASE-3: Validating the corresponding value against current configuration
§ Triggered through Backend client library using message exchange between MGMTD and backend.
§ Executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Validation against current configuration

§ Maintain a duplicate Yang Data sub-tree (Running DB) on backend daemon.
§ Or, maintain a shadow copy of configuration on internal storage. Most daemons do that.

§ PHASE-4: Applying the corresponding value on the backend internal state
§ Executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Needs to access backend internal state.
§ Must not need access to Yang Data tree.
§ Triggered through Backend client library using message exchange between MGMTD and backend.

Processing Configuration
Proposal 1 (Initial Approach)

36

Sharing Management Data

§ Option-1
§ MGMTD daemon maintain

§ Yang Schema Tree
§ Yang Data Tree

§ Running Db
§ Candidate Db

§ Backend daemon maintain
§ Duplicate Yang Schema Tree
§ Duplicate Yang Data subtree copy
§ Internal state.

§ MGMTD loads modules written
by backend to map text
commands to corresponding
XPath.

§ But they MUST NOT have
dependency on internal state of the
backend daemon.

§ MGMTD and Backend daemon
exchange Xpath and data in
native format (using Protobufs)

§ For Validation (In proposal 1 only)
§ For Applying config.

and

Proposal 1: Option1 (Initial Approach)

37

Sharing Management Data

§ Option-2
§ MGMTD daemon maintain

§ Yang Schema Tree
§ Yang Data Tree

§ Running Db
§ Candidate Db

§ Backend daemon maintain
§ Internal state only.

§ MGMTD loads modules
written by backend to map
text commands to
corresponding XPath.

§ But they MUST NOT have
dependency on internal state of
the backend daemon.

§ MGMTD and Backend
daemon exchange Xpath
and data in native format
(using Protobufs)

§ For Validation (In proposal 1 only)
§ For Applying config.

and

Proposal-1 Option2 and Proposal-2 (Final goal)

§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ See later slides for discussion.

§ PHASE-2: Validating the XPATH and corresponding value against Yang Schema
§ Anyhow will have to be moved to MGMTD daemon.
§ Access to Yang Schema tree and Data tree (Running DB) can be provided on MGMTD itself.

§ PHASE-3: Validating the corresponding value against current configuration
§ Executed through ‘create/modify/destroy’ callbacks on (and hence to be loaded on) MGMTD daemon.
§ Validation against current configuration in Yang Data tree (Running DB) on MGMTD daemon only.

§ No message exchange required between MGMTD and backend.

§ PHASE-4: Applying the corresponding value on the backend internal state
§ Executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Needs to access backend internal state.
§ Must not access Yang Data tree.
§ Triggered through Backend client library using message exchange between MGMTD and backend.

Processing Configuration
Proposal 2 (Incremental on-need basis)

39

Processing Show Commands

§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ Currently implemented and executed on backend daemon.

§ PHASE-2: Validating the XPATHs against Yang Schema
§ Again executed on backend daemon.
§ Needs access to Yang Schema tree and Data tree (Running DB).

§ PHASE-3: Fetching the corresponding value from the backend internal state
§ Again executed backend daemon.
§ MUST need access to backend internal state.

Processing Show Commands
Sub-Phases and Requirements

§ Step-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ Has to be somehow moved to MGMTD daemon.

§ Step-2: Validating the XPATH and corresponding value against Yang Schema
§ Anyhow will have to be moved to MGMTD daemon.
§ Access to Yang Schema tree and Data tree (Running DB) can be provided on MGMTD itself.

§ Step-3: Fetching the corresponding value from the backend internal state
§ Executed through ‘get-data/get-elem’ callbacks on backend daemon.
§ Needs to access backend internal state.
§ Must not access Yang Data tree.
§ Triggered through Backend client library using message exchange between MGMTD and

backend.

Processing Show Commands
Proposal

42

Sharing Management Data

§ MGMTD daemon maintain
§ Yang Schema Tree
§ Yang Data Tree
§ Running Db
§ Candidate Db

§ Backend daemon maintain
§ Internal state only needed.

§ MGMTD loads modules written
by backend to map text
commands to corresponding
XPath.

§ But they MUST NOT have
dependency on internal state
of the backend daemon.

§ MGMTD and Backend daemon
exchange Xpath and data in
native format (using Protobufs)

§ For fetching value from
Internal state.

and

Proposal-2

43

Parsing YANG Data

§ Yang data stored in Application Daemon
§ Parsed from string to native format on receiving from VTYSH

§ Stored as native binary format in Yang Data Tree
(lyd_term_node::value)

§ Converted back to string while replying back to VTYSH.

Parsing and passing Yang data
Current method

§ Yang data stored in MGMTD Daemon
§ Proposal 1

§ Parsed from string to native data format on Frontend client.
§ Passed as native data format on Frontend interface to MGMTD.
§ Stored as native data format in Yang Data Tree on MGMTD.
§ Passed to and back from application daemon as native data format over Backend

interface.
§ Passed as native data format on Frontend interface back to Frontend client.
§ Converted back to string on Frontend client.

Parsing and passing Yang data
New MGMTD Architecture

§ Yang data stored in MGMTD Daemon
§ Proposal 2 (community preferred approach)

§ Passed as string on Frontend interface to MGMTD.
§ Parsed from string to native data format on MGMTD.
§ Stored as native data format in Yang Data Tree on MGMTD.
§ Passed to and back from application daemon as native data format over Backend

interface.
§ Converted back to string on MGMTD to send for replying to Frontend client.
§ Passed as string format on Frontend interface back to Frontend client.

Parsing and passing Yang data
New MGMTD Architecture

47

Applying configurations on
Backend

§ Config is pre-validated on MGMTD.
§ No need to wait for APPLY on Backend for Commit to complete.

§ CFG_APPLY_REQ is queued for processing later.
§ Pros

§ Commit can return much earlier.
§ Configuration apply can be spread over time to let other job on the same thread.
§ Or can be packed into a much lesser batches than what was possible with inline

processing.
§ Cons

§ If and only if apply fails, the backend becomes out-of-sync with Config on MGMTD.
§ How to recover?

§ Perhaps restart the backend daemon and re-download config on restart. ???

Applying Config on Backend
Offline processing of CFR_APPLY_REQ

49

Handling VTYSH commands

Current Method
Current Config Commands Processing

Staticd

VTYSH Zebra

lib/vty.c static_vty.c

static_nb_
config.c

lib/vty.c zebra_vty.c

zserv.c

X

show ip route

show running config

ip route x.x.x.x/yX

MGMTD

Frontend
Adapter

Backend
Adapter

lib/vty.c

Transactions

Running
DB

Candidate
DB

FE

static_vty.c
bgp_vty.c

Option 1
Diverted to and Processed on MGMTD (intermediate approach)

Staticd

VTYSH

BGP

lib/vty.c static_vty.c

static_nb_
config.c

Backend
Client Lib

lib/vty.c bgp_vty.c

X

router bgp 100

MGMTD config and
show commands

ip route x.x.x.x/y

ip route x.x.x.x/y

X

SET_CONFIG
<xpath,
value

CREATE_DATA
<xpath, value>
VALIDATE_REQ

APPLY_REQ

mgmt commit-apply

COMMIT-
CONFIG

bgp_nb_
config.c

X

Backend
Client Lib

CREATE_DATA
<xpath, value>
VALIDATE_REQ

APPLY_REQ
router bgp 100

X

§ Command handlers lib-ified and loaded on MGMTD
§ Cannot access any internal state of the Back-end application daemon.
§ Passes set of Xpaths, values and operations to MGMTD Front-end connection.

§ Pros
§ Single connection from VTYSH to MGMTD (and not multiple backend daemons).
§ Conversion from string commands to Xpaths/Value/Operation is no more a

computational burden on the back-end application daemon.

§ Cons
§ Auto-completion cannot be done as is today.

§ Needs to fetch data from MGMTD (running-config or operational).
§ And then present auto-completion options.

Option 1
Diverted to and Processed on MGMTD (interim approach)

MGMTD

Frontend
Adapter

Backend
Adapter

lib/vty.c

MGMTD_v
ty.c Transactions

Running
DB

Candidate
DB

Option 2
Retained and processed on Backend daemon

VTYSHMGMTD config and
show commands

SET_CONFIG
<xpath,
value

CREATE_DATA
<xpath, value>
VALIDATE_REQ

APPLY_REQ

mgmt commit-apply

COMMIT-
CONFIG

Staticd

BGP

lib/vty.c static_vty.c

static_nb_
config.c

Backend
Client Lib

lib/vty.c bgp_vty.c

X

router bgp 100

ip route x.x.x.x/y

bgp_nb_
config.c

X

Backend
Client Lib

CREATE_DATA
<xpath, value>
VALIDATE_REQ

APPLY_REQ

FE

FE

COMMIT-
CONFIG

§ Command handlers running on Back-end daemons as is today
§ Can access any internal state of the Back-end application daemon.
§ Passes set of Xpaths, values and operations to MGMTD Front-end connection.

§ Pros
§ Auto-completion can be done as is today.

§ Cons
§ Conversion from string commands to Xpaths/Value/Operation is still a burden on

the back-end application daemon.
§ VTYSH continues to maintain connections to all individual back-end application

daemons.
§ MGMTD currently does not allow more than one front-end client to edit candidate

DB simultaneously. NOT FEASIBLE.

Option 2
Retained and processed on Backend daemon (not feasible)

MGMTD

Frontend
Adapter

Backend
Adapter

lib/vty.c

MGMTD_v
ty.c Transactions

Running
DB

Candidate
DB

Option 3
Moved to VTYSH (final)

VTYSH

MGMTD config and
show commands

SET_CONFIG
<xpath,
value>

CREATE_DATA
<xpath, value>
VALIDATE_REQ

APPLY_REQ

Staticd

BGP

static_nb_
config.c

Backend
Client Lib

router bgp 100 ip route x.x.x.x/y

bgp_nb_
config.c

Backend
Client Lib

CREATE_DATA
<xpath, value>
VALIDATE_REQ

APPLY_REQ

COMMIT-
CONFIG

lib/vty.c

bgp_vty.c

FE

static_vty.c

§ Command handlers lib-ified and loaded on VTYSH
§ Cannot access any internal state of the Back-end application daemon.
§ Passes set of Xpaths, values and operations to MGMTD Front-end connection.

§ Pros
§ Single connection from VTYSH to MGMTD (and not multiple backend daemons).
§ Conversion from string commands to Xpaths/Value/Operation is no more a

computational burden on the back-end application daemon.
§ MGMTD does not need to deal with Text-to-YANG conversion at all.

§ Cons
§ Auto-completion cannot be done as is today.

§ Needs to fetch data from MGMTD (running-config or operational).
§ And then present auto-completion options.

Option 3
Moved to VTYSH

57

Parsing YANG Xpath

§ Currently
§ Yang data and schema trees stored in Application Daemon.
§ Xpath in string format parsed using Yang Schema and Data trees.

§ The same is used to retrieve Xpath key-values within NB callback functions (e.g. vrf-
name, interface-name, address-families etc).

§ Sometime involves looking up nodes in the Yang data tree.

§ New MGMTD Infrastructure
§ Yang data and schema trees stored in MGMTD.
§ Xpath parsing is possible on MGMTD.
§ How to provide Xpath key-values to NB callbacks on application daemon

§ Without needing to look up nodes in the Yang data tree.

Parsing and passing Yang Xpath
Problem Statement

§ Solution 1 (Interim approach)
§ Always maintain a Yang schema and data tree on application daemons too.
§ Have NB callbacks keep looking up data nodes as today.

§ Solution 2 (Final goal)
§ Parse Xpath into tokens (of tags and key-values).

§ May not have equivalent support from libyang.

§ Pass it to NB callbacks for use (instead of looking up data nodes in Yang data tree).

Parsing and passing Yang Xpath
Possible Solution

60

Parsing YANG XPath
XPATH:
/frr-routing:routing/control-plane-protocols/control-plane-
protocol{frr-rt:type='frr-bgp:bgp', name='bgp-100', frr-
vrf:vrf='default'}/frr-bgp:bgp/global/frr-rt:router-id

§ <Notes TBA>

and

length = 7 num_keys keys[0] keys[1] keys[2] … keys[255]

tags[0] 1 frr-routing | routing

tags[1] 1 frr-routing | control-
plane-protocols

tags[2] 1 frr-routing | control-
plane-protocol

tags[3] 3 frr-routing | type =
“bgp”

frr-routing | name =
”bgp-100"

frr-routing | Vrf =
”default”

tags[4] 1 frr-bgp | bgp

tags[5] 1 Frr-bgp | global

tags[6] 1 frr-bgp | router-id =
”1.1.1.1"

…

Tags[255]

61

Parsing YANG XPath

§ <Notes TBA>

and

62

Parsing YANG XPath

and

num_keys keys[0] keys[1] keys[2] … keys[255]

tags[0] 1 .tag = {
.ns = frr-routing,
.id = routing

}
.val = {

.xml_tag =
"routing"

}

…

tags[3] 3 .tag = {
.ns = frr-rt,
.id = type

}
.val = {

.identityref =
”bgp"

}

.tag = {
.ns = frr-rt,
.id = name

}
.val = {

.string =
”bgp-100"

}

.tag = {
.ns = frr-vrf,
.id = vrf

}
.val = {

.string = ”default”
}

…

tags[6] 1 tag = {
.ns = frr-rt,
.id = router-id

}
.val = {

.ipv4_addr =
”1.1.1.1"

}

63

Static Mapping
XPATH:
/frr-routing:routing/control-plane-protocols/control-plane-
protocol{frr-rt:type='frr-bgp:bgp', name='bgp-100', frr-
vrf:vrf='default'}/frr-bgp:bgp/global/frr-rt:router-id

§ <Notes TBA>

and

Xpath Regexp Backend Adapter Name

“/frr-routing:routing/control-plane-protocols/control-plane-
protocol{frr-rt:type=“frr-bgp”', name=‘*’, frr-vrf:vrf=‘*’}/*”

“BGPd”

“/frr-system:system/hostname” “ISISd”, “OSPd”, “Systemd”

“/frr-system:system/*” “Systemd”

tags[3] 3

tags[4] 1

tags[5] 1

tags[6] 1

…

Tags[255]

64

End-to-End Processing

65

High-level End-to-End Processing Flow

66

Back-end Initialization and Registration
(Re)Connecting to MGMTD

§ Back-end daemon re/init
§ Initializes NB back-end library

§ Provides unique details identifying
itself uniquely.

§ Triggers connection initiation towards
MGMTD.

§ Registers required callbacks for
the YANG models it is interested
in.

§ Registers a series of callback handlers
for individual/group of configuration
and operational data items.

§ NB back-end lib passes the same to
MGMTD.

§ MGMTD
§ Creates new Back-end adapter.

§ Associates it with relevant parts of the
YANG data tree.

§ Passes any relevant
configuration already present.

and

67

Processing Configuration using Transactions
Step-1: Locking Candidate Database and Editing Configuration on Candidate DB

§ MGMTD receives
LOCK_DEB_REQ for candidate
DB.

§ If no other session has taken a
write-lock on Candidate-Db

§ Take write-lock on Candidate-Db.
§ Sends LOCK_DB_REPLY indicating

success.
§ Else

§ Sends LOCK_DB_REPLY indicating
Failure.

§ Client on receiving
LOCK_DB_REPLY with success

§ Sends one (or more)
SET_CONFIG_REQ

§ MGMTD on receiving
SET_CONFIG_REQ

§ If this is first for this session,
Creates a CONFIG transaction if
and only if there are no CONFIG
transactions in progress.

§ Modifies the contents of the
Candidate DB with data from
SET_CONFIG_REQ.

and

68

Processing Configuration using Transactions
Step-2: Commit Configuration from Candidate to Running DB

§ MGMTD receives commit request.
§ Creates transaction for entire

processing
§ Examines the changeset and

prepares.
§ Candidate DB andl ist of YANG tree

nodes being changed.
§ List of back-end adapters

associated.
§ Ordered batches of config nodes

with associated back-end adapter(s)
§ Sends indication to each back-end

daemon for creating local transaction
context.

§ Sends each batch of config items to
corresponding back-end daemons for
verification/validation.

§ On successful validation from all
§ Pushes the same batches of config

items to the relevant back-end
daemon(s) for final apply.

§ Replies back to Front-end adapter
with success

§ Merges candidate DB to running
DB.

§ Cleans up and deletes the
transaction itself.

and

69

Processing Configuration using Transactions
Step-3: Cleaning up commit and Unlocking the Candidate DB

§ Merges candidate DB to
running DB.

§ Replies back to Front-end
client with
COMMIT_CONFIG_REPLY
indicating success.

§ Cleans up and deletes the
transaction itself.

and

70

Processing Configuration using Transactions
Handling Valid Configurations across multiple Backend Daemons

§ MGMTD receives commit request.
§ Creates transaction for entire

processing
§ Examines the changeset and

prepares.
§ Candidate DB andl ist of YANG tree

nodes being changed.
§ List of back-end adapters

associated.
§ Ordered batches of config nodes

with associated back-end adapter(s)
§ Sends indication to each back-end

daemon for creating local transaction
context.

§ Sends each batch of config items to
corresponding back-end daemons for
verification/validation.

§ On successful validation from all
§ Pushes the same batches of config

items to the relevant back-end
daemon(s) for final apply.

§ Replies back to Front-end adapter
with success

§ Merges candidate DB to running
DB.

§ Cleans up and deletes the
transaction itself.

and

71

Processing Configuration using Transactions
Handling Invalid Configurations across multiple Backend Daemons

§ MGMTD receives commit
request.

§ Creates transaction thread
for entire processing

§ Examines the changeset and
prepares.

§ Candidate DB andl ist of YANG
tree nodes being changed.

§ List of back-end adapters
associated.

§ Ordered batches of config nodes
with associated back-end
adapter(s)

§ Sends indication to each back-end
daemon for creating local
transaction context.

§ Sends each batch of config items to
corresponding back-end daemons
for verification/validation.

§ On first validation failure from any
§ Replies back to Front-end

adapter with error.
§ Deletes candidate DB.
§ Cleans up and deletes the

transaction thread itself.

and

72

Retrieve Operational Data
Retrieve Lists, Containers and Leaf members

and

73

Retrieve Operational Data
Retrieve Lists, Containers and Leaf members

and

74

Retrieving ‘show running-config’

§ Running DB maintained on
MGMTD.

§ Configurations already
verified and applied earlier
on back-end daemons.

§ No need to involve back-
end process for ‘show
running config’.

and

75

Notifying data from Backend

§ Front-end client sessions
express interest in specific
Yang data-items.

§ Frontend client library sends
NOTIFY_DATA_REQ with
corresponding details

§ Front-end adapter on
MGMTD registers the
corresponding session
against the Yang data node
for future reference.

§ Later data notification arrives
on backend adapter

§ Looks up all registered
sessions.

§ Sends a
DATA_NOTIFY_REQ for
each of the registered
sessions.

and

Open Items and Issues

• Support for namespace
• Registration of callbacks at back-end. Possibly from multiple back-end daemons for the

same configuration item with priority-based ordering.
• Delivery of callbacks registered from multiple backends for the same configuration item
• Avoid YANG parsing on back-end process.
• Provide all the keys of YANG XPath to back-end callback handlers.

Items

• Re-use of existing NB callback handlers.
• Avoid duplicating YANG data tree across MGMTD and back-end daemons.

Issues

Next Items

• Support for namespace
• Registration of callbacks at back-end. Possibly from multiple back-end daemons for the

same configuration item with priority-based ordering.
• Delivery of callbacks registered from multiple backends for the same configuration item
• Avoid YANG parsing on back-end process.
• Provide all the keys of YANG XPath to back-end callback handlers.

Low-level Designs

• Re-use of existing NB callback handlers.
• Avoid duplicating YANG data tree across MGMTD and back-end daemons.

Issues

References

• Northbound Architecture Wiki: https://github.com/opensourcerouting/frr/wiki/Architecture
• Requirements for Centralised Management: https://github.com/FRRouting/frr/wiki/FRR-

Centralized-Management-Requirements

Community Documents

• RFC 6421 – NETCONF Protocol : https://datatracker.ietf.org/doc/html/rfc6241
• RFC 6536 – NETCONF Access Control Model : https://datatracker.ietf.org/doc/html/rfc6536
• RFC 7954 – YANG Specifications : https://datatracker.ietf.org/doc/html/rfc7954
• RFC 8342 – NETCONF Datastore Architecture : https://datatracker.ietf.org/doc/html/rfc8342
• RFC 8526 – NETCONF extensions for Datastores : https://datatracker.ietf.org/doc/html/rfc8526
• RFC 8040 – RESTCONF Protocol : https://datatracker.ietf.org/doc/html/rfc8040

Standards

https://github.com/opensourcerouting/frr/wiki/Architecture
https://github.com/FRRouting/frr/wiki/FRR-Centralized-Management-Requirements
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6536
https://datatracker.ietf.org/doc/html/rfc7954
https://datatracker.ietf.org/doc/html/rfc8342
https://datatracker.ietf.org/doc/html/rfc8526
https://datatracker.ietf.org/doc/html/rfc8040

79

THANK YOU!!!

80

Backup Slides

81

Code Organization

MGMTD/MGMTD_db.
[ch]

MGMTD/MGMTD_trx
n.[ch]

MGMTD/MGMTD_fr
ntnd_server.[ch]

MGMTD/MGMTD_fr
ntnd_adapter.[ch]

MGMTD/MGMTD_
bcknd_server.[ch]

MGMTD/MGMTD_
bcknd_adapter.[ch]

lib/MGMTD_frnte
nd_client.[ch]

lib/MGMTD_bckn
d_client.[ch]

staticd/static_vt
y.[ch]

staticd/static_nb
.[ch]

staticd/static_nb
_config.c

Sample:
MGMTD/MGMTD

_test_frntnd.c

lib/MGMTD.proto

82

Front-End Interface
GRPC Client

• <TBA>

and

83

Front-End Interface

• INIT_SESSION_REQ
• INIT_SESSION_REPLY
• LOCK_DB_REQ
• LOCK_DB_REPLY
• UNLOCK_DB_REQ
• UNLOCK_DB_REPLY
• GET_CONFIG_REQ
• GET_CONFIG_REPLY
• SET_CONFIG_REQ
• SET_CONFIG_REPLY
• COMMIT_CFG_REQ
• COMMIT_CFG_REPLY
• GET_DATA_REQ
• GET_DATA_REPLY
• CLOSE_SESSION_REQ

and

84

Retrieve Operational Data
Retrieving Large List elements

§ MGMTD receives GET_DATA
request.

§ Examines the XPath and
prepares.
§ List of YANG tree.
§ List of back-end adapters

associated.
§ For large ‘list’ node

§ MGMTD sends a single Get-Data
requests to back-end daemon.

§ Back-end prepares and send upto
‘N’ items in reply.

§ Indicates the key value for the
next item.

§ MGMTD sends data received from
back-end to Front-end via adapter.

§ Indicates more reply GET-REPLY
to be expected.

§ MGMTD sends nexr follow upGET-
Next-Data request withnext key
value received in last reply.

§ Back-end prepares and send next
‘N’ items starting at next key value.

§ Indicates the key value for the
next item (‘None’ if there’s no
more).

and

85

Retrieve Operational Data
Retrieving Large List elements (contd.)

§ For large ‘list’ node
(contd.)

§ …
§ MGMTD sends multiple follow up

GET-Next-Data requests to
back-end with appropriate next-
key value.

§ Back-end prepares and send
next ‘N’ items in reply.

§ Indicates the key value for the
next item (‘None’ if there’s no
more).

and

86

Retrieve Operational Data
Retrieve Containers and Leaf members

§ For ‘container’ node
§ MGMTD sends a single Get-Data

requests to back-end daemon.
§ May even combine more than

one node in a single request.
§ Back-end prepares and sends all

‘leaf’ items under a single container
in a single reply.

§ MGMTD sends data received from
back-end to Front-end via adapter.

§ For ‘leaf’ node
§ MGMTD sends a single Get-Data

requests to back-end daemon.
§ Back-end prepares and sends the

single ‘leaf’ in a single reply.
§ MGMTD sends data received from

back-end to Front-end via adapter.

§ If all data nodes has been
sent, MGMTD sends the last
GET-REPLY to Front-end.

§ with indication that no more GET-
Replies are to be expected.

and

87

Transactions
CONFIG Transactions -- Creating New Transaction

§ <Notes TBA>

and

88

Transactions
CONFIG Transactions -- Validating Valid Configurations

§ <Notes TBA>

and

89

Transactions
CONFIG Transactions -- Validating Valid Configurations (contd)

§ <Notes TBA>

and

90

Transactions
CONFIG Transactions -- Validating Invalid Configurations

§ <Notes TBA>

and

91

Transactions
CONFIG Transactions -- Applying Validated Configurations (contd.)

§ <Notes TBA>

and

92

Transactions
CONFIG Transactions -- Wrapping Up Successful Commit

§ <Notes TBA>

and

93

Transactions
CONFIG Transactions -- Wrapping Up Rejected
Commit

§ <Notes TBA>

and

94

Processing VTYSH Commands

§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ Currently implemented as DEFPY_YANG() routines and executed on backend daemon.
§ Calls nb_cli_enqueue_changes() followed by nb_cli_apply_changes()

§ PHASE-2: Validating the XPATH and corresponding value against Yang Schema
§ Again executed on backend daemon.
§ Needs access to Yang Schema tree and Data tree (Running DB).

§ PHASE-3: Validating the corresponding value against current configuration
§ Again executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Needs access to current configuration in Yang Data tree (Running DB).

§ PHASE-4: Applying the corresponding value on the backend internal state
§ Again executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Needs to access backend internal state.
§ Must not need access to Yang Data tree.

Processing VTYSH Commands
Sub-Phases and Requirements

§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ Has to be somehow moved to MGMTD daemon for Phase-2.

§ PHASE-2: Validating the XPATH and corresponding value against Yang Schema
§ Anyhow will have to be moved to MGMTD daemon.
§ Access to Yang Schema tree and Data tree (Running DB) can be provided on MGMTD itself.

§ PHASE-3: Validating the corresponding value against current configuration
§ Triggered through Backend client library using message exchange between MGMTD and backend.
§ Executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Validation against current configuration

§ Maintain a duplicate Yang Data sub-tree (Running DB) on backend daemon.
§ Or, maintain a shadow copy of configuration on internal storage. Most daemons do that.

§ PHASE-4: Applying the corresponding value on the backend internal state
§ Executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Needs to access backend internal state.
§ Must not need access to Yang Data tree.
§ Triggered through Backend client library using message exchange between MGMTD and backend.

Processing Configuration
Proposal 1

§ PHASE-1: Converting Text Commands to Yang Xpaths – VTYSH only
§ Has to be somehow moved to MGMTD daemon for Phase-2.

§ PHASE-2: Validating the XPATH and corresponding value against Yang Schema
§ Anyhow will have to be moved to MGMTD daemon.
§ Access to Yang Schema tree and Data tree (Running DB) can be provided on MGMTD itself.

§ PHASE-3: Validating the corresponding value against current configuration
§ Executed through ‘create/modify/destroy’ callbacks on (and hence to be loaded on) MGMTD daemon.
§ Validation against current configuration in Yang Data trree (Running DB) on MGMTD daemon only.

§ No message exchange required between MGMTD and backend.

§ PHASE-4: Applying the corresponding value on the backend internal state
§ Executed through ‘create/modify/destroy’ callbacks on backend daemon.
§ Needs to access backend internal state.
§ Must not access Yang Data tree.
§ Triggered through Backend client library using message exchange between MGMTD and backend.

Processing Configuration
Proposal 2

Next Items

• Support for namespace
• Registration of callbacks at back-end. Possibly from multiple back-end daemons for the

same configuration item with priority-based ordering.
• Delivery of callbacks registered from multiple backends for the same configuration item
• Avoid YANG parsing on back-end process.
• Provide all the keys of YANG XPath to back-end callback handlers.

Low-level Designs

• Re-use of existing NB callback handlers.
• Avoid duplicating YANG data tree across MGMTD and back-end daemons.

Issues

§ Northbound Architecture
Wiki: https://github.com/opensourcerouting/frr/wiki/Architecture

§ Requirements for Centralised
Management: https://github.com/FRRouting/frr/wiki/FRR-
Centralized-Management-Requirements

References

https://github.com/opensourcerouting/frr/wiki/Architecture
https://github.com/FRRouting/frr/wiki/FRR-Centralized-Management-Requirements

